
Technical Appendix for “Enabling Empirical

Analysis of Piano Performance Rehearsal with

the < Anonymized > MIDI Dataset”

1 Symbolic Fingerprinting

1.1 Fingerprint Hash Generation

• Generates a list of tokens that contains a hash value representing three
note sequences that occur in the score/performance, by using their indi-
vidual pitches and the ratio of the onset time difference between them.

• The parameter ‘d’ represents the minimum time difference two consecutive
notes must have between their onset times (in seconds) in order to consider
them as separate notes.

• The n1 and n2 parameters allow for performance errors where certain notes
are skipped. n1 determines the number of notes in the note event sequence
to consider as options for the second note in the three note sequence, and
n2 determines the same for the third note in the sequence. e.g. for a
sequence C-D-E-F-G and n1, n2 = 2:

a = range(0, n1), b = range(0, n2)

Token 1: (C, D, E); where a = 1 and b = 1

Token 2: (C, D, F); where a = 1 and b = 2

Token 3: (C, E, F); where a = 2 and b = 1

Token 4: (C, E, G); where a = 2 and b = 2

For generating the fingerprint tokens from the score, both n1 and n2 take
the value of 3, in order to allow the tokens of the score to represent note
skip errors. For the generation of tokens from each rehearsal, both n1
and n2 take the value of 1, as the rehearsal’s tokens need to represent the
rehearsal as is played.
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Algorithm 1: Token Generation

Data: note array
Result: token list
d ← 0.05;
n1, n2 ← 3;
token list ← [ ];
for i ← 0 to length(note array) do

note1 pitch ← note array[i][‘pitch’];
note1 onset ← note array[i][‘onset’];
note2 count ← 0;
j ← i + 1;
repeat

note2 flag ← True;
repeat

note2 onset ← note array[j][‘onset’];
td 1 ← note2 onset - note1 onset ;
if td 1 ≥ d then

note2 pitch ← note array[j][‘pitch’];
note2 flag ← False;

else
j ← j + 1;

end

until note2 flag = False;
note3 count ← 0;
k ← j + 1;
repeat

note3 flag ← True;
repeat

note3 onset ← note array[k][‘onset’];
td 2 ← note3 onset - note2 onset ;
if td 2 ≥ d then

note3 pitch ← note array[k][‘pitch’];
td r ← td 1/td 2;
notes hash ← hash(note1 pitch, note2 pitch,
note3 pitch, td r);
token ← [notes hash, note1 onset, td 1];
token list.Append(token);
note3 flag ← False;

else
k ← k + 1;

end

until note3 flag = False;

until note3 count = n2 ;

until note2 count = n1 ;

end

2



1.2 Hash Table Generation

• Given the list of tokens that were created from multiple scores, a hash
table is generated where the hash is linked to the list of scores from which
it was generated.

Algorithm 2: Update Hash Table with New Score’s Token List

Data: token list, score name
Result: hash table
hash table ← { };
for i ← 0 to length(token list) do

if token list[ i ][ 0 ] NOT in hash table then
hash ← token list[ i ][ 0 ];
hash table[hash] ← [ ];

else
hash table[ hash ].Append(score name);

end

end

1.3 Rehearsal Piece Identification

• Given a token list from a rehearsal midi file, the individual hashes from
the token list are looked up in the hash table. A counter is maintained for
each score in the hash table. If the hash exists in the table, the counters
of all the scores that contain the hash are incremented by 1.

• Finally, the score with the highest count is returned as the predicted piece.

Algorithm 3: Predict Rehearsal Piece

Data: rehearsal token list, hash table
Result: predicted piece
score count ← { };
for i ← 0 to length(rehearsal token list) do

rehearsal hash ← rehearsal token list[ i ][ 0 ];
if rehearsal hash NOT in hash table then

score count[ ‘None’ ] ← score count[ ‘None’ ] + 1;
else

for j ← 0 to length(hash table[ hash ] do
score name ← hash table[ hash ][ j ];
score count[ score name ] ← score count[ score name ] + 1;

end

end

end
predicted piece ← maximum(score count);
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2 Rehearsal Structure Analysis

Our approach for finding related fragments in a rehearsal (referred to in the
manuscript as step 1 of an ideal rehearsal structure analysis pipeline) is divided
into 2 main phases. First, the Self Similarity Matrix (SSM) is computed. Then,
it is used to find relevant diagonals, which pass through a series of grouping
and filtering operations. The output is a set of grouped intervals representing
related fragments in the input performance.

2.1 Self Similarity Matrix

1. Group notes within a given proximity threshold into one time bin, and
create a ’chord group’ matrix from this info where a pitch is set to 1 when
it appears in a bin.

2. Concatenate the observation probability for each bin with respect to a
pitch profile matrix of the whole rehearsal.

Algorithm 4: Complete Self-Similarity Matrix Computation from
Note Array

Data: note array ; /* array of (note[’onset sec’], note) */

Result: ssm ; /* Self Similarity Matrix (n bins x n bins) */

ssm ← [ ];
win ← 100 ; /* milliseconds */

profile ← [0.02, 0.02, 1, 0.02, 0.02] ; /* Default Value */

chord pitches ← ChordifyProximalPitches(note array, win);
pitch profiles ← ComputePitchProfiles(chord pitches, profile)

for idx ← 0 to length(chord pitches) - 1 do
row ← ComputeObsProbability(pitch profiles, chord groups[idx]) ;
row ← Reshape(row, 1, length(row));
ssm.Append(row);

end
ssm ← Concatenate(self similarity matrix, axis=0);

return ssm
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Algorithm 5: Chordify Proximal Pitches

Function ChordifyProximalPitches(note array, win):

i ← 0;
prox groups ← [];

while i < length(note array) do
(time, note) ← note array[i];
if i = 0 then

group ← EmptyArray();
group start ← time;

end
else

if (time - group start) × 1000 ≥ win then
prox groups.Append(group);
group ← EmptyArray() ; /* start new group */

group start ← time;

end

end
group.Append((time, note));
i ← i + 1;

end
prox groups.Append(group) ; /* Add final group to result */

n ← length(prox groups);
chord pitches ← init zeros(n, 128);
grp starts ← init zeros(n);

for i ← 0 to length(prox groups) - 1 do
group ← prox groups[i];
for j ← 0 to length(group) - 1 do

(time, note) ← group[j];
if j = 0 then

grp starts.Append(t)
end
chord pitches[i, n.pitch] ← 1;

end

end
return chord pitches

end
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Algorithm 6: Compute Pitch Profiles

Function ComputePitchProfiles(chord pitches, profile):

eps ← 0.01;
pitch profiles ← Convolve(chord pitches, profile);
pitch profiles ← pitch profiles + eps;
pitch profiles ← pitch profiles / Maximum(pitch profiles)

return pitch profiles;

end

Algorithm 7: Compute Chord Observation Probabilities

Function ComputeObsProbability(pitch profiles, pitch obs):

pitch prob ← (pitch profilespitch obs) × ((1 -
pitch profiles)(1−pitch obs));
pitch obs prob ← Product(pitch prob, dim=1);

return pitch obs prob;

end
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2.2 Finding Related Rehearsal Fragments

1. Find all diagonals matching hyperparameter constraints (α: minimum
diagonal length, β: similarity threshold, and γ: gap tolerance)

2. Group diagonals by overlaps along the horizontal and vertical SSM dimen-
sions. (λ: overlap ratio)

3. Merge the identified horizontal and vertical groups based on inter-group
common diagonal occurrences.

4. Convert diagonals to time intervals (tstart, tend) (in seconds)

Pseudocode is not provided for the SortByDim and ConvertToIntervals
functions. SortByDim sorts diagonals based on their start times along
the given dimension. ConvertToIntervals converts the input groups from
diagonals into second intervals

Algorithm 8: Finding Related Rehearsal Fragments - Main

Data: ssm, α, β, γ, λ
Result: interval groups; /* [[(t1 s, t1 e), ..], [ ], ..] */

unsorted diagonals ← FindDiagonals(ssm, α, β, γ)

i sorted diags ← SortByDim(diagonals, λ, dim=0); /* by start i */

h groups ← GroupByOverlaps(i sorted diags, dim=”horizontal”);
j sorted diags ← SortByDim(diagonals, λ, dim=1); /* by start j */

v groups ← GroupByOverlaps(j sorted diags, dim=”vertical”);

merged groups ← MergeRelatedGroups(v groups, h groups)
intervals ← ConvertToIntervals(merged groups)
return intervals
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Algorithm 9: Find Diagonals in Self-Similarity Matrix

Function FindDiagonals(ssm, α, β, γ):

diagonals ← [ ];
similarity thresh ← β × Maximum(ssm);

for offset ← 1 to ssm.shape[0] - 1 ; /* Exclude main diagonal

*/

do
diag ← Diagonal(ssm, k=offset);
curr start ← null;
curr len ← 0;
tol ctr ← 0;
local tol ctr ← 0;
for i ← 0 to length(diag) - 1 do

if diag[i] ≥ similarity thresh then
if cur start = null then

curr start ← i ; /* Start diag. segment */

end
curr len ← curr len + 1 ; /* Grow active segment */

local tol ctr ← 0;

end

end
else if curr start ̸= null ; /* if < thresh found mid-segment

*/

then
if tol ctr < γ then

tol ctr ← tol ctr + 1;
local tol ctr ← local tol ctr + 1;
curr len ← curr len + 1;

end
else

if curr len - local tol ctr ≥ α then
diagonals.Append((curr start, curr start + offset,
curr len-local tol ctr));

end
curr start ← null;
curr len ← 0;
tol ctr ← 0;

end

end

end
if curr start ̸= null and curr len - local tol ctr ≥ α then

diagonals.Append((curr start, curr start + offset,
curr len-local tol ctr));

end
return diagonals ; /* list of (start i, start j, length) */
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Algorithm 10: Group By Overlaps - Main Algorithm

Function GroupByOverlaps(sorted diagonals, overlap ratio, dim):
diagonal seen ← ZerosArray(length(sorted diagonals));
groups ← EmptyArray();

for i ← 0 to length(sorted diagonals) - 1 do
if diagonal seen[i] = 1 then

continue ; /* every diagonal is processed once */

end
group head = sorted diagonals[i];
current group ← EmptyArray();
current group.Append(group head);
diagonal seen[i] ← 1;

/* (start, end) on given dim */

group interval ← current cluster[0].GetInterval(dim);

for j ← 0 to length(sorted diagonals) - 1 do
if diagonal seen[j] = 1 then

continue;
end
interval j ← sorted diagonals[j].GetInterval(dim);

/* CASE 1: INTERVALS OVERLAP */

if IntervalOverlap(interval j, group interval, overlap ratio)
then

current cluster.Append(sorted diagonals[j]);
diagonal seen[j] ← 1;
continue;

end

/* CASE 2: CLUSTER HEAD CONTAINS INTERVAL */

if IntervalSubset(interval j, group head) then
/* Cut diagonal to match group head span along

chosen dim */

cut diagonal ← CreateDiagonalSubset(sorted diagonals,
i, j, dim);

current group.Append(cut diagonal)
end

end

end
groups.Append(current cluster);
return groups

end
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Algorithm 11: Group By Overlaps - Create Diagonal Subset

Function CreateDiagonalSubset(sorted diagonals, i, j, dim):
new length ← sorted diagonals[i].length;
if dim = 0 then

/* HORIZONTAL CASE */

new start i ← sorted diagonals[i].start i;
new start j ← sorted diagonals[j].start j + (new start i -
sorted diagonals[j].start i);

end
else

/* VERTICAL CASE */

new start j ← sorted diagonals[i].start j;
num steps ← new start j - sorted diagonals[j].start j;
new start i ← sorted diagonals[j].start i + num steps;

end
cut diagonal ← (new start i, new start j, new length);

end
return cut diagonal
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Algorithm 12: Merging Related Diagonal Groups

Function MergeRelatedGroups(dim0 groups, dim1 groups):
merged groups ← [ ];
group assignment ← { } ; /* seen diagonals and their groups

*/

unique group id ← 0;

all groups ← dim0 groups ∪ dim1 groups;

/* 2 groups are connected when they share a diagonal */

for group in all groups do
connected groups ← [ ];
for diagonal in group do

if diagonal in group assignment then
connected groups.append(group assignment[diagonal]);

end

end
if length(connected groups) > 0 then

/* merge connected groups by reassigning ids */

new group id ← connected groups[last];
for diagonal, group id in group assignment do

if group id ∈ connected groups then
group assignment[diagonal] ← target group;

end

end
for each diagonal in group do

group assignment[diagonal] ← target group;
end

end
else

/* group not connected to another, give a unique id

*/

for each diagonal in cluster do
group assignment[str(diagonal)] ← unique group id;

end
unique group id ← unique group id + 1;

end

end
unique groups ← UniqueValues(group assignment);
for each ug in unique groups do

new group ← [ ];
for each diagonal, group in group assignment do

if group assignment[i] = ug then
new group.append(diagonal);

end

end
clusters.Append(new cluster);

end
Result: merged groups

end
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